The Riemann Zeta - Function and the Sine Kernel

نویسنده

  • H. Kösters
چکیده

Abstract. We point out an interesting occurrence of the sine kernel in connection with the shifted moments of the Riemann zeta-function along the critical line. We establish this occurrence rigorously for the shifted second moment and, under some constraints on the shifts, for the shifted fourth moment. Our proofs of these results closely follow the classical proofs for the non-shifted moments of the Riemann zeta-function. Furthermore, we conjecture that the sine kernel also occurs in connection with the higher (even) shifted moments and show that this conjecture is closely related to a recent conjecture by Conrey, Farmer, Keating, Rubinstein, and Snaith [CFKRS1, CFKRS2].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function

By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...

متن کامل

On the Occurrence of the Sine Kernel in Connection with the Shifted Moments of the Riemann Zeta Function

Abstract. We point out an interesting occurrence of the sine kernel in connection with the shifted moments of the Riemann zeta function along the critical line. We discuss rigorous results in this direction for the shifted second moment and for the shifted fourth moment. Furthermore, we conjecture that the sine kernel also occurs in connection with the higher (even) shifted moments and show tha...

متن کامل

Equivalent Conditions of a Hardy-type Integral Inequality Related to the Extended Riemann Zeta Function

Abstract. By the use of techniques of real analysis and weight functions, we obtain two lemmas and build a few equivalent conditions of a Hardy-type integral inequality with a non-homogeneous kernel, related to a parameter where the constant factor is expressed in terms of the extended Riemann zeta function. Meanwhile, a few equivalent conditions for two kinds of Hardytype integral inequalities...

متن کامل

1 6 Ju l 2 00 9 Quantum scalar fields in the half - line . A heat kernel / zeta function approach

In this paper we shall study vacuum fluctuations of a single scalar field with Dirichlet boundary conditions in a finite but very long line. The spectral heat kernel, the heat partition function and the spectral zeta function are calculated in terms of Riemann Theta functions, the error function, and hypergeometric PFQ functions.

متن کامل

A Note on Some Positivity Conditions Related to Zeta and L-functions

The theory of Hilbert spaces of entire functions [1] was developed by Louis de Branges in the late 1950s and early 1960s with the help of his students including James Rovnyak and David Trutt. It is a generalization of the part of Fourier analysis involving Fourier transform and Plancherel formula. The de Branges-Rovnyak theory of square summable power series, which played an important role in l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009